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1. hTRODUCTIO"-i

Let til and II be integers with 0 "S til "S II, and let X be a closed subset
of [0, X ) containing at least 111+11 + 2 points. ,¥ will denote X if 111 < 11

and X is bounded. and X will denote Xu: CfJ l otherwise. Let
Co(X)=:fEC(X):f(x)=O if XEX: (thus if X IS unbounded.
then lim\.,.,c\f(x)=O. Also, for the case that 111=11. the theory
given here holds provided only that lim, . , 'f \f(x) exists). For any
Y c;: [O,Y,,] with Y II [0, x ) closed. define R;;'[ Y] = : R = P/Q: Pix) =

Po+P1X+'" +p",x"'Efl",. Q(x)=(!o+i/1x+,,, +i/"x"Efl". Q>O on
Y, max o,/ II Ii/II = I. P/Q is in lowest terms, and i'P"S i1Q if Y is unboun­
ded}. Here elP = degree of P, JIm is the set of all polynomials of degree "S 111

with real coefficients. and Y unbounded means either x. E Y or Y is an
unbounded subset of [0, x). If x. c Y. we define Q(J~ ) = lim \ . , Q(xj and
R(:x:)=lim,. ,(P(x)/Q(x)), and we observe that RER;;'[YJ implies that
this last limit exists and is finite. Furthermore. the requirement that Q> 0
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on Y will be taken to be satisfied by Q( oc ) = oc when Q is not a constant.
We also define R;;'[ Y] = {R EO R;;'[ Y]: q,,;;: O}. Letting Ilhll y =

sup, c y Ih( y) I, we say R* EO R;;' [Y] is a best approximation to f EO Co( Y) on
Y from R~'[ Y] if III - R* II y ~ III - RII } for all REO R;;'[ Y] (and similarly
for R;;' [ Y] ).

We observe that R~'[ Y] = R;~[ Y] if Y is unbounded. The reason for
introducing R~'[ Y] is that in the m < n case, if a best approximation from
R;;'[X] exists, then this approximation is also best on X n [0, h] from
R;;'[X n [0, h]] for some real number h, so this approximation can be
computed by working on a bounded set. This follows from the fact that the
alternation characterization for a best approximation from R;;'[ Y] is the
same for Y bounded as it is for Y unbounded. Neither of these facts is true
if R;;' is replaced by R;;' (see [8] for a discussion in the special case of
reciprocal polynomial approximation).

In the case m = n, if a best approximation on X = Xu: .'£: from
R;;I[XU {x}] exists, then this approximation is also best on
(Xn[O,h])u{oc] from R;;'[(Xn[O,h])u{w]] for some real number
h. This follows from the fact that the alternation characterization for a best
approximation on Y u [x } from R;;' [Yu roc }] is the same for Y boun­
ded as it is for Y unbounded. Neither of these facts is true if the point at x
is removed, since in the m = n case (unlike the m < n case), x can be an
essential extreme point; that is, an extreme point whose removal would
change the approximation. In this case, we will show how a differential
correction based algorithm can be used to directly compute
approximations on Z u { x.} where Z is finite.

In Section 2 we give an (alternation) characterization theorem, a "zero in
the convex hull" characterization, and a strong uniqueness theorem. In Sec­
tion 3 we give a discretization theorem and examples.

We require some additional notation. Given R* = P*/Q* EO R;;'[X], we
define d(R*)=min(m-(~P*, n-DQ*) (we say R* is nondegenerate if
d(R*l=O), M(R*)={XEOX: II(x)--R*(x)I=llf-R*II\}, and O"(x)=
sgn(f(x) - R*(x)). We say {XI' ..., xv} <;; M(R*) with XI < X:, < ... < Xv is
an alternating set of length N for f-R* if f(X,+I)-R*(x III )=
- (f(x j ) - R*(x j )) for i = I, ... , N - I. If N is minimal but sufficiently large
to guarantee that R* is a best approximation to f on X from R;;'[X]
according to Theorem 2.2 then we call {x I ' ... , X tv} an alternant for f - R *.
If P EO fim and {P k } <;; fim' Pk =! P will mean that the coefficients of P k

converge to those of P (and similarly for Q EO fi" and {Qd <;; fi,,). Finally,

{
(X+ I)",

D(x)=
l,

m=n

m<n.
(I.1 )

Some of the results in this paper for the case where X is unbounded have
been proved, in a somewhat different situation, in [I, 2].
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2. CHARACTERIZATION AND UNIQUENESS RESULTS

We have, for approximating from R;;'P'],

THEOREM 2.1 (Kolmogoroff). R* E R;;'[X] is a hClt approximation to
IE Co(X) iff

mm (/(x) - R*(x))(R(x) - R*(x)):S; 0, VR E R;;'[Xl
.If( R'I .

THEORE\1 2.2 (alternation and uniqueness). S'uppose IE Co(X) and
R* = P*/Q* E R;;'[Xl

( I) II III = n, then R* is a hest approximation to I on X iff there exists
an alternating set jilr 1- R* in X oj'length m + n + 2 - d( R*);

(2a) il III < nand n- {":Q*:S; m- ('P*, then R* is a hest approximation
to I on X iff there exists an alternating set f!lr 1- R* in X 01 length
m + n + 2 - d( R*):

(2b) il m < nand n - (":Q* > m i'P*, then R* is a hest approximation
to I on X iff there exists an alternating set jiJr 1- R* in X oj' length
m + n + I - d( R*), and the sign oj' 1-- R* at the largest point in this set
equals the sign 01 the leading coe!flcient 01 P*.

Furthermore. in all cases he.l't approximations are unique.

Remark. If in case (2b) the maximum length of any alternating set for
1- R* is m + n + I - iI( R*), then one can think of the restriction q,~ ~ 0 as
playing the role of another point in the alternant (as in [8]). If this restric­
tion were removed, and X is bounded. then the approximation could be
improved (X unbounded requires q,~ ~ 0 since Q* > 0 on X).

The proofs of Theorems 2.1 and 2.2 are omitted, since they involve only
small modifications in the proofs of Theorems 1, 2 and 4 in [Il

We note that sometimes when n<2, best approximation froIll R;;'[X]
exists, a best approximation from R;;'[X] will exist, where R;;'[XJ is
R;;' [X] with the restriction removed that P/Q be in lowest terms.
Specifically, the common factor in P and Q cannot be cancelled. otherwise
the new denominator would be negative somewhre on X. Algorithms such
as those in [9J will occasionally produce such an aeproximation. A

modified alternation theorem for approximation from R;;' [XJ could be
proved as in [5]. but we do not pursue it in this paper. Note that if
X = [O,J.) then a best approximation from R;;'[X] will always exist (see
Theorem 3. J ).

We observe that Theorem 2.2 holds regardless of whether X is bounded
or unbounded. This is not true in the case m < n if R;;'[XJ is replaced by
R;;'[XJ, since if X is bounded, any best approximation from R7,'[XJ must
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possess an alternant of length m + n + 2 - d( R*) by the standard theory.
This unification of the theory for X bounded and unbounded allows us to
prove the following theorem.

THEOREM 2.3. Let f E Co(X) and

(1) Suppose m = n and a hest approximation R* on X to f exists from
R;;'[X]. Then there is a realnumher h such that R* is the hest approximation
on (X n [0, h]) u {X!) to ffrom R;;'[(X n [0, h J) uix n

(2) Suppose m < n and a hest approximation R* on X to f exists Fom
R;;'[X]. Then there is a realnumher h such that R* is the hest approximation
on X n [0. h] to fFom R;;'[X n [0. h]].

Proof We prove (2) for the case that R* satisfies (2b) of Theorem 2.2.
The other cases follow in a similar manner applying the alternation theory
for best uniform nonconstrained rational approximations. Let
:x I. "., X/11 I 'II I dl Ii' I j be an altemant for f - R* in X. and let
h = X/11 ''I I I dIR')' Then {XI' ... , X"'" 'I + I "IR'I: is an alternant for f - R*

in Xn[O,h]=(Xn[O,h]l and R*ER;;'[Xn[O.h]], so R* is best tof
on X n [0. h] by Theorem 2.2(2b). I

Although it is desirable to find a constructive way of choosing h (as in
[8J l. and such a method exists if m = n and X = [0. x ), it could require
the computation of as many as 4m + 8 rational approximations. Therefore.
in most situations, one is better off just trying larger values for h until one
is found which works. The fact that such a number h does exist shows that
approximation on unbounded X can be done by approximating on a
bounded subset (with the point at XJ appended if m = n).

The reason for appending ·.x in the case m = n is that Theorem 2.3 is
false otherwise. To see this, construct an example (e.g., Example 2 in Sec­
tion 3) where every alternating set of length m + n + 2 - d(R*) contains the
point atx. Then R* is not best on X n [0, h] for any real h. For the m < 11

case, x cannot be an "essential" extreme point, since best approximations
are characterized by a bounded altemant (e.g., Theorem 2.2).

The following two lemmas will be useful. We only sketch the proofs,
since the arguments are similar to those in [2].

LEMMA 2.1. Suppose X is a closed suhset oj' [0. IX) containing at least
m + n + 2 points, and R* is a hest approximation to f E Co(X)\R;;'[X] Fom
R;;'[X]. Let A= {XI""'XV}~Xhe an alternantfor f-R*, and let A k =
:x 14' .", X Vk } ~ X satisf.i· Xik --> x; pir i = 1, ... , N, where x; < x; < ... < x',
and x'v < x ij'm < n. Let (Pk }~ fi"" {Qk) ~ fin' {Gk} satis/)'
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,1/

PdX) = L PI,XI,
1-' ()

"
Q,(X) = L q"x l

,

I 0

'"
PIx) = L Pix',

,~ II

"
Q(X) = I q,x'.

, 0

Suppose that j()r aU k, either

(i) R, = PdQ, E R;;'[A,J and O"(x;)(R,-R*)(x,d ~ ~D, ji)r
i = 1, ... , N, or

(ii) q",~O if N=m+m+l-d(R*), and (J(x;)(P,/D-R*(QdD))
(Xik) ~ -c, fin' i = 1, ... , N.

Then PQ* - P*Q == O. Furthermore, if R* is nondegenerate,
maxo ,;, "lq,,1 = I, Vk, and maxo , iVQ,(X,,) ~ 0, Vk. then P = p* and
Q = Q*, so P, ::::: P* and Q, ::::: Q*

Proof We first observe that (i) implies (ii) (with a different (1:,:) since
if (i) holds, then for all sufficiently large k and for i = I, .... N, we have

O"(X,) (~ - R* ~,) (x,d

= O"(x,) ~, (x" )(R, - R* Hx,d

> Q, ( . ) ./" -D XI' L,

1 (" )- ., 1 L (x; + I)f D, ..... 0
D(x,)-" , II

-(q" + 1)1:, ..... 0

if x; <x

if<= J-c.

Thus we assume (ii) holds, and divide the proof into two parts.

Case 1. (N=m+n+2-d(R*)). For i= 1.... , N- I we have

so (J(xlHPQ* - P*Q)(.:<) ~ o.
If x~v <'fJ, then the last inequality holds for i = N also. Thus, counting

zeros implies that PQ* - P*Q == O. Suppose :<v =x (so m = n by
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assumption) and PQ*-P*Q 1= 0, then c(PQ*-P*Q)=m+n-d(R*)
and this implies that

(
p Q). PQ*-P*Q
--R*- (x)= * (00)#0.
D D Q D

Thus, for some real .X' > x'", I' sufficiently large, we have

a(x",) sgn(PQ* - P*Q)(.X')

= a(x v) sgn (I:... - R* Q) (.X') = a(x y ) sgn (I:... - R* g) (x) > 0,
. D D . D D

so again PQ* - P*Q == 0, as desired.
The last sentence of the lemma now follows by standard arguments.

ease2 (N=m+n+ I-d(R*)). As in Case I, if PQ*-P*Q 1= 0 then
we must have i"(PQ* - P*Q) = m + 11 - d( R*). Using Theorem 2.2, we have

D( PQ*):S m + i"Q* < 11 + ap* :S m + n - d(R*).

So again (~Q = n, (lp* = m - d( R*) and hence q" > O. Thus for real .X' > .X-:v
(sufficiently large) we have

sgn(PQ* - P*Q)(.X') = -sgn(P*Q)(.X')

= -sgn(1eading coefficient of P*) = -a(x",),

so -a(xy).(PQ*-P*Q)(X'»O, and the rest follows as in Case 1. I

LEMMA 2.2. Suppose X is a closed subset of [0, 00), Y is a compact sub­
set of X containing at least m + n + 2 points, R* E R;;'[X] is nondegenerate,
and [Pk } c;; fI"" [Qk} c;; fI" satisf)- Pk =t P* and Qk ~ Q*. If m < n, sup­
pose further that cQ*)o n - I, q"k)o 0 for all k if c3Q* = n - 1, and either
(~Q* )0 m + 1 or q"k = 0 for all k )0 some constant k o. Then there exist con­
stants Q and E > 0 such that for all k suffIciently large, Q*)o e and Qk)o el2
on X and IIRk-R*llx:S Q IIRk-R*lly, where Rk=PdQk'

Proo/ If m = n, nondegeneracy implies q.~ > O. Assume X is unbounded;
similar arguments work if X is bounded. Thus, regardless of whether m = n
or m < n, for all k)o some constant k I we will have either q"k)o ~q: > 0 (if
aQ*=n) or q"k)oO, q,;=O, q" l.k)o~q: I >0 (if oQ*=n-l). The lower
bounds on Q* and Qk follow from this. If we let (Pk Q* - P*Qd(x) =
L;'~~t alk Xl and consider the degrees of the numerator and denominator
of Rk-R*=(PkQ*-P*QdIQ*Qk' we also get IIRk-R*II.v:S

M0513·3
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r\max O I """Ialkl for some constant 1'\. Thus, if Y~[O,L] for some
L > 0, then for k sufficiently large we get (for some constant 1'2), that

II Rk - R* II \:( 1'11'2 liPkQ* -- P*Qk II 1 = I' \ 1'2 il Q*Q k( R k - R*) III

:( 1'\ 1'2.2 if U)2 IIR k - R*lll == Q IIR k - R*lll' I
\; 0

One can prove the following "zero in the convex hull" characterization of
best approximations in our setting. The proof, which uses Lemma 2.1 and
arguments similar to those in [3], will be omitted.

THEOREM 2.4. Giren X a closed suhset of [0, x ) with at least m + n + 2
points, fE'Co[XT\R;;TX], and R*E'R;;'[X],let SI=:[O, .... O,-l]l~
R'" +" + 2 if m < nand q,; = 0. and S \ = 0 othel"\rise. Further let
M'(R*)=M(R*)\U, x,] (\lith (c=inf((':[(',:c]~M(R*))) ifm<n and
x. E' M( R*), alld M '(R*) = M( R*) otherwise. Let D(x) he defined hr (1.1 )
and let

f' l 1 x5= a(x) --,--, ....
D(x) D(x)

x"' R*(x) xR*(x) X"R*(X)J" I * J' .--,--, , ..., .\E'M (R ) uS l .
D(x) D(x) D(x) D(x)

Then R* is a hest approximation to f fi'om R;;' [X] Oil X iff 0 E' jf (S) == the
COilvex hull ot S.

Next we prove a strong uniqueness theorem which we require later. The
proof follows the line of argument used to obtain strong uniqueness results
in [2,3].

THEOREM 2.5. S'uppose X is a closed suhset of [0, ''r.' ) cOlltaining at least
m + n + 2 points and R* E R;;' [X] is a hest approximat iOIl to IE' Cor Xl. Sup­
pose R* is nondegenerate, and it m < n also assume either X is hounded or
DQ* ? max(n- I, til + I). Then there is a constant "/ > °such that Iii!' all
R E' R;;'[X],

iII-Rllv? U--R* \+)' IIR-R*II\.

Proof: If IE' R;;TX] the result follows immediately, so assume
Irf. R;;'[X]. Suppose (by way of contradiction) there exists (R k } ~ R;;'[X]
with R k =f R* for all k and

,,( R .) == IiI - Rk II x - IiI - R* 11 x --+ 0.
I k IIRk-R*llv
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Then II Rk II x is bounded (otherwise y( R k ) f-> 0), so using subsequences, if
necessary, we can assume Pk =t PE IIm , Qk =t Q E II". Let A be an alter­
nant for f-R*. For any YEA, we have

y(Rd IIRk - R*llx= Ilf- Rk 11.\'-llf- R*llx

~ 0-( y)(f- Rk)( J') - o-(y)(f- R*)( y)

= 0-( y)( R* - Rk )( Y).

By Lemma 2.1, P== p* and Q == Q*, so Pk =t P* and Qk =t Q*. Now let
L > 0 be such that X~ [0, L] if X is bounded, otherwise X n [0, L] has at
least f11 + n + 2 points. In either case, define Y = X n [0, L]. Then by
Lemma 2.2 there are constants [; > 0, ko, and Q such that for k ~ k o we
have Q*~£ on X, Qk~£/2 on X, and IIRk-R*llx~QIIRk-R*II;. Now
let (PkQ* - P*Qk)(X) = I7~~t alk X', 13k = maxOS/Sm+" la 'k I, and
(' = infk '? ko max, FA 0-( y)( (R* - Rk)( y)/fJ k)' Then arguments similar to
those in Lemma 2.1 can be used to show c > 0, by showing that assuming
the contrary implies I7~~t(a,dfJdx' converges to the zero polynomial.
Now drawing subsequences if necessary, let Yo be such that
o-(Yo)((R*- Rk)(Yo)/IJd~(', for all k~ko. For k~ko we have

3. DISCRETIZATION RESULTS, COMPUTATION AND EXAMPLES

In actually computing approximations one normally works on a finite
point set, so it is of some interest to know how such a computed



226 KAUFMAN, LEEMING, AND TAYLOR

approximation compares to the best approximation on [0, c!J]. The
following discretization theorem sheds some light on this question.

THEOREM 3.1. Suppose f E Co [0, x J\ R;;' [0, x].

(i) A hest approximation, R x ,from R~'[O,x] on [0, x ] exists.

(ii) Suppose R x is nondegenerate, and h is so large that R x is also
hest on [0, hl Then a hest approximation Rz exists on Zfrom R;;'[Z] for

all Z s- [0, h] with IIZII := supxc rO.h 1 inf, c z Ix - yl sufliciently small, and Rz
converges uniformly to R, on [0, h] as II ZII -+ 0. Furthermore.

limilzli'o Ilf- Rzll z = Ilf - R f II]O:hl'
(iii) Under the hypothesis of (ii), suppose further that ij' m < n, then

cQ, ? n - I and either cQx ? m + I or f - R, has no alternant oj" length
m + n + 2 in [0, h]. Then Rz E R;;'[O, Cf-J] ./()r all IIZII sufficiently small, and
Rz converges uniform!.v to R, on [0, x; ] as IIZII -+ 0. Furthermore

lim,1z'l _0 Ilf- Rzll z = Ilf- R, 11[0.,. I'

(iv) Under the hypothesis oj' (iii), ./()/. II ZII sufjiciently small there is a
constant M I (independent oj" Z), such that

I'f- Rzll ro , 1- Ilf- R, Ilro,] ~ MI(w(IIZII)+ IIZII),

where

w()):= maxI If(x) -f(y)l: x, yE [O,x) and Ix - YI ~ ()}.

(v) Under the hypothesis oj" (iii), assume also that OEZ and hEZ, and
f" is continuous on [0, h1 Then ./(H II ZII sufficiently small there is a constant
M 2 such that

Ilf- Rzll(o, 1-llf- R, II [Of.] ~ M 2 11Zf·

Proof: (i) This result (cited in [I]) comes from the work of Werner
[I°lIt can be proved using the standard existence proof for a bounded
interval.

(ii) The third sentence of (ii) follows from the second; the second is
proved by small modifications of the arguments in [4]. Lemma 2 of [4] is
replaced by the following result, which follows from Lemma 2.1 of
this paper by a contradiction argument. Let D > ° be given and
A = {x l' ... , X N } s- [0, h] be an alternant for f - R f. ; then there exist b > °
and a function 11(1:) with 11( e) -+ °as I: -+ 0 such that if A' = {X'I ' ..., x:v ] s­
[0, hJ is fixed with I.X; - Xii < () if x, <x, and .X; = x if Xi = x for
i = I, ... , N, and R E R;;'[A'] satisfies a(xJ(R - R y )(:<)? -,: for i = I, ..., N,
then for I: > ° sufficiently small we have R ER;;' [0, h] and
II R - R, II rO.h] ~ 11(1:)·

(iii) We first observe that if cQ I = n - I = m and f - R, has no
alternant of length m + n + 2 in [0, hJ (note that m < n so [0, hJ = [0, hJ),
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then oQz == n - 1 for all Z with IIZII sufficiently small. If this were not true,
then considering a sequence {Zk} with Zk r:;;. [0, b], II Zk II --+ 0, Rk best on
Zb and OQk == n for all k, and (as in [2]) considering an accumulation
point of alternants for f - R k on [0, b], one can show that this
accumulation point forms an alternant of length m + n + 2 for I - R, in
[0, b], contrary to our assumption. Now it follows from Lemma 2.2 that
there is a constant Q such that for IIZII sufficiently small, R z E R;;'[O, 00]
and IIRz- Rx II rO,f 1~ Q II Rz- R I II rO,I>1' so the uniform convergence on
[0, 00] follows from (ii).

(iv) Using Lemma 2.2 and Theorem 2.5, there are constants Q and
,'> °such that for IIZII sufficiently small we have

III- Rzil rox 1- III- R f. II ro,x 1~ Rz - Ref. II [O,f.] ~ Q IIRz- R, II r0l>1

Q
~ - [III - Rzil [0,1>] - III - R J.II rOl>1]'

y

so it suffices to show that

Ilf - Rzil [0.1>] -Ill - R, II rO,I>1 ~ w( IIZII) + M 3 IIZII

for some constant M 3 independent of Z. For II ZII small, suppose .X E [0, h]
satisfies II(x)-Rz(x)1 = III -RzIIro,I>j, and then choose yEZ such that
Ix-yl~IIZII. Since Qx.~I; on [O,h] for some 1:>0, we must have
Qz~I;/2 on [0, h] for all IIZII sufficiently small. Using this and the fact
that the coefficients of P z and Qz are bounded, we have

III- Rzil [0,1>] = II(x) - Rz(x)1

~ If(x) -f(y)1 + II(y) - Rz(y)1

+ IPAy) QAx) - PAx) Qz( Y)I
Q;AY) QAx)

~w(IIZII)+ Ilf-RAz

4 .
+0 IPzLv) Qz(x) -- Pz(y) Qz(y)

c

+ Pz( y) Qz( y) - P z(x) Qz( y )I

~w(IIZII)+ III-R,llz

+ ;;~ [I PzLv )I Iitl qj7( Xl - yl) I+ IQzLv )I

·1 i~1 PiZ( yi - Xi) IJ
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~ w( Ilzll l + III - R, II [0.h1

4 Ix - YI\- /I _ j

+ D2 L1Pz(Yll/Lllqi/(X I +x/ \+ ... + y i 1)1

+ IQz(YlII 1Pi;.'(Y' I + Xl" 2+ ... +X' Il[l
, 1 J

~w(IIZII)+ 111- R, Ilrohl

4 II Z II t- ( OJ ,\ ( /I • j I)
+~_ L IPiZI h) L Iqvl Jh

. /-, () I _/ I

+ (to Iq/zl h/)(t,Ipi/I ih' 1)1
~ w(IIZII) + 111- R, II [Ohl + M, IIZII

for some constant M 3 independent of Z, and the resut follows.

(v l Arguing as in (iv), it suffices to show that

111- Rzil [0.h1 -111- R, Ilrohl ~ M4 11Z11 2

for some constant M 4 independent of Z, with II Zil sufficiently small. But
this was shown in [6] using the results of Ellacott and Williams [7). I

A natural question to ask at this point is: If h was chosen sufficiently
large, does IIZII sufficiently small guarantee that Rz is best on Z u [h,y..J]?
Under the assumptions of Theorem 3. L part (iiil, the answer is yes if
x ~ M(R f ), since then we can choose h so large that for all x ~ h,
II(x) - R, (xli ~ III - R x II [0. r 1-1:\ for some D1 > 0, and use the fact that
Rz converges uniformly to R f on [0, x). The following example shows,
however, that if -x E M(R £ ) it is possible that for any real h > 0 there exists
Zh~ [0, h] with IIZh[1 arbitrarily small and RZh is not best on ZhU [h,::,o).

EXAMPLE 1. Let fECo[O,X] have values -1/2,5/3, -1/6,21/11,
-1/18, 53/27 and 0 at 0, 1,2,3,4,5 and 6, respectively. Define f to be
linear between these points and define f(x) = 0 for x ~ 6. Then
RJERHO,x] defined by R,(x)=(I+x2 )/(2+x2

) is a best rational
approximation to f on [0, ,x.;] from R~[O, x], with error norm I and
alternant {O, 1,2,3,4,5}. Choose any h with h>5: then R, is best on
[0, h). For any positive integer k, define R k E R~ [0, CXJ] by
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Using elementary calculus, R k has a unique maximum on [0, CD] at

:xk=k-2+J(k-2)2+2, with Ih=Rk(cLd=I-I/k+O(I/k 2). Let k be
so large that :X k > h, and 1(f - Rk )( 6) 1 < Ih - 1/k. Now using the facts that,
for large k, 1(f-Rd(i)I>lh-l/k for i=0, ... ,5 and 1/,(x)l>
1R~(x)1 + 19/12 for x E (i, i + I), i = 0, ... , 5, we can construct

Z k = [bOb I - iiId u [I + bib 2 - c52 d u ... u [5 + (5'k' h]

with bOk->O+, ... ,bsk->Ot, ()Ik->O", ...,t')Sk->O' (so !IZkl' ->0), Rk is best
on Zk with error norm f3k-l/k and altemant [60k , I +()Ik, ... , 5 -+-()Sk)' but
Rk is not best on Zk u [h,x] since III- Rk 11 7 ,u [hy 1= Ih.

For numerical computation we use a combined First Remes-differential
correction program [9], which computes approximations of the form

P(X) PorPo(x) -+- + Pl/lrPl/I(x)

Q(x) Cfo!/Jo(X) + + Cfll!/JII(X)

on a finite set, with ICfjl ~ 1 for j = 0, ... , 11 and Q > 0 on the set. Minor
changes were made in two subroutines to force 0 ~ Cfll ~ I instead of
-I ~ Cfll ~ 1. If m < 11, we take rPJ'() = Xl for i = 0, ... , m and !/JJ'() = Xl for
j = 0, ... , n. If m = n we wish no compute an approximation on Z u : x ],
where Z is a finite subset of [0, X! ). In this case, we define

Xl. XEZ Xl. XEZ

rP;(X) = 0, X= Y-J, i<m; !/JJt) = O. X= 'X.'. i < n

I, X= ~£'. i=m I. X= Y~. j=n

and thus (P/Q)(x)=p"jqll' If d(R»O, so qll=O, the program can still
find an approximation of the form o:(x) P(x )/(:x(x) Q(x)), where :x E II"I RI is
positive on Z u { x }, so the coefficient of X" in the denominator will be
positive.

EXAMPLE 2. Let Z = {O, 0.1,0.2, ... , 20}. We approximated I on
Z u {x} from R: [Z u {,X) }], where I takes the values - 1, - 5/2 and 0 at
0,2 and 5, respectively, I is linear between these points, and I(x) = 0 for
X ~ 5. To allow use of the program described above without further
modification, we let 20.1 play the role of x. The computed approximation
on Zu {X)} was

-2+0.1x
R(x)=---­

1+O.lx

with error norm I, achieved at ot, 2 ,5 + and 'XJ (where the sign
indicates the sign of f - R). This approximation is best on [0, x ].
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For companson, we also computed the best approximation
on {O, 0.1, 0.2, ..., 100} (::fJ not included); the result was
( - 1.99385 + 0.11494x )/( 1 +0.08559x) with error norm 0.99385, achieved
at 0 +, 2- , 5 ~ and 100 . This approximation (unlike the previous one) is
not best on {O. 0.1, 0.2.... , 100} U { ::fJ } as the error atx is ~ 1.34293.

Further details of proofs in this paper can be obtained from the authors.
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