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l. INTRODUCTION

Let m and » be integers with O <<m <n, and let X be a closed subset
of [0, x¢) containing at least m +#n+ 2 points. X will denote X if m<n
and X is bounded, and X will denote Xu {o ! otherwise. Let
CoX)=1{/eC(X)f(x)=0 i xekX] (thus if X is unbounded.
then lim, _, . ,/f(x)=0. Also. for the case that m=n, the theory
given here holds provided only that lim_. ,, .., f(x) exists). For any
Y< [0, ] with YN [0, x) closed, definc R"[Y]={R=P/Q: P(x)=
Pot+tpix+ - +pxX"ell,. Qx)=qgo+q¢g, X+ - +q¢,x"€ll,, Q>0 on
Y, max, ., ., ¢,/ =1. P/Q is in lowest terms, and ¢P < JQ if Y is unboun-
ded}. Here dP = degree of P, 11, is the set of all polynomials of degree <m
with real coefficients, and Y unbounded means either e Y or Y is an
unbounded subset of [0, oc). If « ¢ ¥, we define Q(x )=Ilim_ , , Q(x) and
R(oc)=1lim, ., (P(x)/Q(x}), and we observe that Re R”[ Y] implies that
this last limit exists and is finite. Furthecrmore, the requirement that Q >0
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on Y will be taken to be satisfied by Q(oc)= oo when Q is not a constant.
We also define R7[Y]={ReR"[Y]: ¢,20}. Letting |h],=
sup,. y |A(y)l, we say R*e R"[ Y] is a best approximation to f'e Cy(Y) on
Yfrom RP[Y]if ||f—R*|,<|lf—Rl, for all Re R?[ Y] (and similarly
for R™[YT).

We observe that R7[Y]=R"[ Y] if Y is unbounded. The reason for
introducing R7[ Y] is that in the m <n case, if a best approximation from
R™[ X7 exists, then this approximation is also best on X [0, 5] from
R"[ X [0,h]] for some real number b, so this approximation can be
computed by working on a bounded set. This follows from the fact that the
alternation characterization for a best approximation from R”[ Y] is the
same for ¥ bounded as it is for ¥ unbounded. Neither of these facts is true
if R is replaced by R” (see [8] for a discussion in the special case of
reciprocal polynomial approximation).

In the case m=n, if a best approximation on X=Xu {x | from
R"[Xu {oc)] exists, then this approximation is also best on
(X [0, u {0 from R[(X[0,b])u {o0]] for some real number
bh. This follows from the fact that the alternation characterization for a best
approximation on Yu {oc } from R”[Yu {oc}] is the same for ¥ boun-
ded as it is for Y unbounded. Neither of these facts is true if the point at x
1 removed, since in the m =n case (unlike the m < n case), oc can be an
essential extreme point; that is, an extreme point whose removal would
change the approximation. In this case, we will show how a differential
correction based algorithm can be wused to directly compute
approximations on Zu { o } where Z is finite.

In Section 2 we give an (alternation) characterization theorem, a “zero in
the convex hull” characterization, and a strong uniqueness theorem. In Sec-
tion 3 we give a discretization theorem and examples.

We require some additional notation. Given R*= P*/Q*e R"[X], we
define d(R*)=min(m —JP*, n—72Q*) (we say R* is nondegenerate if
d(R*)=0), M(R*)={xeX: |f(x)~R*(x)=]f—R*|y}. and a(x)=
sgn(f(x)— R*(x)). Wesay (x|, .., xy; © M(R*) with x; <x,< -+ <x, s
an alternating set of length N for f—R* if f(x,, )= R¥(x;, )=
—(flx;)— R¥(x)) for i=1,.., N— 1. If N is minimal but sufficiently large
to guarantee that R* is a best approximation to f on X from R"[X]
according to Theorem 2.2 then we call {x,, .., x,} an alternant for f— R*.
If Pell, and {P,} <11, P, 3 P will mean that the coefficients of P,
converge to those of P (and similarly for Qe /1, and {Q,} = I1,). Finally,

L e+ m=n
D('X):{L m<n. (1.1

Some of the results in this paper for the case where X is unbounded have
been proved, in a somewhat different situation, in [1, 2].
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2. CHARACTERIZATION AND UNIQUENESS RESULTS
We have, for approximating from R”[X],

TheEOREM 2.1 (Kolmogoroff). R*e R™[X] is a best approximation to
S e ColXy iff
min (f{x)— R¥(xX)}(R(x)— R*(x))<0.  VReR}[X]
)

v M(R*

THEOREM 2.2 (alternation and uniqueness). Suppose e Cy(X) and
R*=P*/Q*ec R"[X].

H

(1) If m=n, then R* is a best approximation to | on X iff there exists
an alternating set for [ — R* in X of length m+n+ 2 — d(R*);

(2a) if m<mnand n—cQ* <m—cP* then R* is a best approximation
to [ on X iff there exists an alternating set for [ — R¥ in X of length
m+un+2—dR*):

(2b) if m<nandn—cCQ* > m— CP*, then R¥* is a best approximation

to 1 on X iff there exists an alternating set for f— R* in X of length
m+n+1—d(R*), and the sign of f - R* at the largest point in this set

equals the sign of the leading coefficient of P*.
Furthermore, in all cases best approximations are unique.

Remark.  1f in case (2b) the maximum length of any alternating set for
/= R*is m+n+1—d(R*), then one can think of the restriction ¢F =0 as
playing the role of another point in the alternant (as in [8]). If this restric-
tion were removed, and X is bounded. then the approximation could be
improved (X unbounded requires ¢ =0 since O* >0 on X).

The proofs of Theorems 2.1 and 2.2 are omitted, since they involve only
small modifications in the proofs of Theorems 1, 2 and 4 in [1].

We note that sometimes when no best approximation from R7[X]
exists, a best approximation from R"[X] will exist, where R”"[X] is
R”"[X] with the restriction removed that P/Q be in lowest terms.
Specifically, the common factor in P and O cannot be cancelled, otherwise
the new denominator would be negative somewhre on X. Algorithms such
as those in [9] will occasionally produce such an approximation. A
modified alternation theorem for approximation from E;}'[Y] could be
proved as in [5], but we do not pursue it in this paper. Note that if
X =[0, ») then a best approximation from R™[X7] will always exist (see
Theorem 3.1).

We observe that Theorem 2.2 holds regardiess of whether X is bounded
or unbounded. This is not true in the case m<n il R”[X] is replaced by
R7[ X7, since if X is bounded, any best approximation from R7[X7] must
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possess an alternant of length m +#n+2—d(R*) by the standard theory.
This unification of the theory for X bounded and unbounded allows us to
prove the following theorem.

THEOREM 2.3. Let e Co(X) and

(1) Suppose m=n and a best approximation R* on X to | exists from
R"[X]. Then there is a real number b such that R* is the best approximation
on (X [0,h])u (o) 1o [ from ROU(X [0, h])u {x}].

(2)  Suppose m < n and a best approximation R* on X 1o f exists from
R XT. Then there is a real number b such that R* is the best approximation
on X [0, 0] to [ from RV"[ X~ [0,h]].

Proof. We prove (2) for the case that R* satisfies (2b) of Theorem 2.2.
The other cases follow in a similar manner applying the alternation theory
for best uniform nonconstrained rational approximations. Let
IN|sen Xmna1 are, be an alternant for f—R* in X, and let
h=X, w1 wre Then {x, X, .., 4xe s isan alternant for f— R*
in XN [0,h]=(XN[0,h]) and R*e R"[X~ [0.h]], so R* is best to [
on XN [0, 5] by Theorem 2.2(2b). |

Although it is desirable to find a constructive way of choosing b (as in
[8]), and such a method exists if m=n and X =[0, x), it could require
the computation of as many as 4m + § rational approximations. Therefore,
in most situations, one is better off just trying larger values for # until onc
is found which works. The fact that such a number » does exist shows that
approximation on unbounded X can be donc by approximating on a
bounded subset (with the point at oo appended if m =n).

The reason for appending o in the case m=n is that Theorem 2.3 is
false otherwise. To see this, construct an example (e.g., Example 2 in Sec-
tion 3) where every alternating set of length m +n+ 2 — d(R*) contains the
point at oc. Then R* is not best on X'~ [0, 4] for any real b. For the m <an
case, »x cannot be an “essential” extreme point, since best approximations
are characterized by a bounded alternant (e.g., Theorem 2.2).

The following two lemmas will be useful. We only sketch the proofs,
since the arguments are similar to those in [2].

Lemma 2.1, Suppose X is a closed subset of [0, o) containing at least
m+n+ 2 points, and R* iy a best approximation to f e Co( X\R"[ X] from
R;;’[/\—’] Let A={x,,..,xy} S X be an alternant for | — R*, and let A, =
IX s e X € X 8(11‘!8/‘1 X — X, for i=1, .., N, where x| <xh< - <X
and x'y <o if m<n. Let { P} 217 o S 17,,, Lep ) satisfy

"o l

P, 3 Pell,, 0.3 0¢ell,, i, 20, & — 0,
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where

2 n

Pux)=Y pux.  Pl)=Y px.
)= 0

j= 0

Q,lx)= Z 4 X O(x)= Z q,x".

j=0 j-0

Suppose that for all k. either

(i) R, = PJQ, e R'AT and o(x)(R,~ R*)xy) = —¢, for
i=1,., N, or

(M) ¢u=20 if N=m+m+1—dR*), and o(x(P,/D— R*(Q,/D))
(xy)= —g for i=1,.,N.
Then  PQ*— P*Q=0. Furthermore, if R* is  nondegenerate,
MaXg.,o, 1qal =1 Yk, and max, ., . vQulx, )20, Yk, then P=P* and
Q=0Q%* so P, 3 P*and Q, 3 O*

Proof.  We first observe that (i) implies (ii) (with a different {¢, }) since

if (1) holds, then for all sufficiently large k& and for i=1, .., N, we have
P )
6(X,) (—Di R* %) {(x,)
=0 Y:}% (X (R — R*)x )
D
= *% (x,)

N

]
*W<Z (.\':+1)/>8k“*0 if .\”,{<‘X‘
Xil— 3 ;

0

‘*(%:"’ 1)8/\ -0 lf \I,: oG

Thus we assume (ii) holds, and divide the proof into two parts.

Case l. (N=m+n+2—d(R*)). Fori=1,.,N—1 we have
P.O*— P*Q,
a(x;) (‘—A——Q‘*B——i> (xp) = —24,

so a(x ) (PO* — P*Q)x[)=0.
If x'y < oo, then the last inequality holds for i= N also. Thus, counting
zeros implies that PQ*— P*Q=0. Suppose xy=o (so m=n by
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assumption) and PQ*— P*Q £ 0, then &(PQ* — P*Q)=m+n—d(R¥)
and this implies that

P O\, | _PO*-P*Q
(5K 5) - gm0

Thus, for some real ¥> x, ,, sufficiently large, we have

o(Xy) sgn(PQ* — P*Q)(X)

P . P Q
=0o(x,)sgn (B~ R* %) (X)=0(xy)sgn (5 — R* B) (cc) >0,
so again PQ* — P*(Q =0, as desired.

The last sentence of the lemma now follows by standard arguments.

Case2 (N=m+n+1—d(R*)). Asin Casel, if PO* — P*Q # 0 then
we must have ¢(PQ* — P*Q)=m +n—d(R*). Using Theorem 2.2, we have

APO*)<m+0Q*<n+IP*<m+n—d(R*).

So again ¢Q =n, ¢P* =m — d{(R*) and hence ¢, > 0. Thus for real ¥> x/,
(sufficiently large) we have

sgn(PQ* — P*Q)(X) = —sgn( P*Q)(%)

= —sgn(leading coefficient of P*)= —ag(x,),

s0 —a(xy) - (PQ*— P*Q)(¥) >0, and the rest follows as in Case 1. |

LEMMA 2.2, Suppose X is a closed subset of [0, «0), Y is a compact sub-
set of X containing at least m+n+ 2 points, R* e RZ'[Y 1 is nondegenerate,
and (P <11, {Q <1, satisfy P, 3 P* and Q, 3 Q* If m<n, sup-
pose further that ¢0*=n—1, q,, =0 for all k if 0Q* =n—1, and either
c0*=m+1 or q,, =0 for all k= some constant k,. Then there exist con-
stants § and € >0 such that for all k sufficiently large, Q* > ¢ and Q, > ¢/2
on X. and |R, — R*| ¢ <Q | R, — R¥||y, where R, =P,/Q,.

Proof. 1f m=n, nondegeneracy implies ¢* > 0. Assume X is unbounded;
similar arguments work if X is bounded. Thus, regardless of whether m = #
or m<n, for all kK >some constant k, we will have either g,, = 3¢5 >0 (if
cQ¥=n)or q, =20, g¥=0,q, =¥ >0 (f 60*=n—1). The lower
bounds on Q* and Q, follow from this. If we let (P, Q* — P*Q,)(x)=

mima,x'" and consider the degrees of the numerator and denominator
of R, R*=(P,Q* - P*Q,)/0*0,. we alo get |R —R*|¢<

640:51:3-3
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ryMaXg <m0 4l for some constant r,. Thus, if Y= [0, L] for some
L >0, then for k sufficiently large we get (for some constant ), that

IR — R*[ g <riry [PLO* = P*Qully = ryr2 1Q*Qu(R, — R*)||,
<2 ( ) L’> IR, — R*||, = QIR - R*[l,. 1
j= 0
One can prove the following “zero in the convex hull™ characterization of
best approximations in our sctting. The proof, which uses Lemma 2.1 and
arguments similar to those in [3], will be omitted.

THEOREM 2.4. Given X a closed subset of [0, «) with at least m+n+2
points, fe€ Co[XINRY[X], and R*¥*e R"[X], let S;=1{[0,...0, — 1]} <
R if m<n and ¢*=0, and S,=@ otherwise. Further let
M'(R*)= M(R*)\[¢, 1 (with c=mf{c: {c, 2 ]S M(R*)}) if m<n and
x € M(R*), and M'(R*)= M(R*) otherwise. Let D(x) be defined by (1.1)
and let

[ 1 N
5= {0“ ) [D(.\-)’ D(x) "

X"OR*(x) xR*¥(x)  XTR*(x) ) |
) . :xeM(R*)}u‘Sl.
D(x) D(x)  D(x) D(x)

Then R* is u best approximation to | from R7[ XY on X iff 0e #(S) = the
convex hull of S.

Next we prove a strong uniqueness theorem which we require later. The
proof follows the line of argument used to obtain strong uniqueness results
in [2,3].

THEOREM 2.5. Suppose X is a closed subset of [0, o0} containing at least
m+n+ 2 points and R* € R"[ X is a best approximation to e Cy(X). Sup-
pose R* is nondegenerate, and if m < n ulso assume either X is bounded or
cQ* zmax(n — 1, m+1). Then there is u constant y>0 such that for all
Re R"[X].

I/ =Risz1f—R*y+7 IR—=R¥],.

Proof. 1f feR"[X] the result follows immediately, so assume
/¢ R"[X]. Suppose (by way of contradiction) there exists { R, } = R"[X]
with R, # R* for all k and

/= Rilly— N/ — R*ﬂx_}

0.
IR, — R*I ¢

7(Ry)
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Then || R,| ¢ 1s bounded (otherwise y(R,) +0), so using subsequences, if
necessary, we can assume P, 3 Pell,, Q, 3 Qell,. Let A be an alter-
nant for f — R*. For any ye A4, we have

HRO IR = R¥ e =|lf = Ryl e = If — R*| &

a() )(f RI(y)—a(p)f—R*)(y)
( DR* — Ry ) »)

By Lemma 2.1, P=P* and Q= Q% so P, 3 P* and Q, 33 Q* Now let
L. >0 be such that X< [0, L] if X is bounded, otherwise X n [0, L] has at
least m+n+2 points. In either case, define Y=Xn[0,L]. Then by
Lemma 2.2 there are constants ¢>0, k,, and Q such that for k >k, we
have 0*>¢ on X, Q, 2&/2 on X, dnd R, — R*|| s < Q2 ||R,— R*||,. Now
let (P Q* = P*Q ) x) =27 +o" a/A X/, Bi=maXg</cmynlanl and
c=inf, ., max, _ o(y )((R* N v)/Bi). Then arguments similar to
those in Lemma 2.1 can be used to show ¢ >0, by showing that assuming
the contrary implies > 7 *"(a,/f)x' converges to the zero polynomial.
Now drawing subsequences if necessary., let y, be such that
a( Vo) (R* — R W vo)/ )= ¢, forall k= k,. For k =k, we have

(R*— R )(vy)

HR)IR, — R¥| y Z a( ¥l R* — Re)(yo) = Bra(yy) I
k

1PLQ* — P*Quly
AR

2/31\( =

=g 104 Qu R R,

&
5 IR — R¥||y

2_.__— B
M+ 1
[=0 L 2

e 1
> — |R, — R*| ¢,
sy g R R

s0 Y(R,) = e%c/(2Q Y+ L), which violates y(R,) - 0. |

3. DISCRETIZATION RESULTS, COMPUTATION AND EXAMPLES

In actually computing approximations one normally works on a finite
point set, so it is of some interest to know how such a computed
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approximation compares to the best approximation on [0, ¢ ]. The
following discretization theorem sheds some light on this question.

THEOREM 3.1.  Suppose fe C,[0, > 1\ R0, % ].

(i} A best approximation, R, , from R"[0, oc ] on [0, o] exists.

(i1}  Suppose R is nondegenerate, and b is so large that R, is also
best on [0, b]. Then a best approximation R, exists on Z from R?[Z7] for
all Z< [0, b with ||Z =sup .oy inf, ., |x — v| sufficiently small, and R,
converges uniformly to R, on [0,b] as [[Z}} - 0. Furthermore,
limuzx; ) Hf‘ R/ H/ = “f* R,, HW

(ii1)  Under the hypothesis of (1), suppose further that if m<wn, then
cQ, =n—1 and either 6Q, Z2m+1 or {— R, has no alternant of length
m+n+2in [0,b]). Then R, e R0, ov] for all | Z| sufficiently small, and
R, converges uniformly to R, on [0, ] as |Z)| = 0. Furthermore
limuzw ol f =R =1/ —R, |l -

(iv)  Under the hypothesis of (ii1), for |Z| sufficiently small there is a
constant M | (independent of Z), such that

- Rx”[o_, 1 If~R, H((),, 1= M (o(|ZI[)+ | Z]]).
where
w(d)=max{|f{x)—f(y):x, ve [0, xc)and [x—y| <d}.
(v)  Under the hypothesis of (ii1), assume also that 0e Z and be Z, and

[ is continuous on [0, b. Then for |Z\ sufficiently small there is a constant
M, such that

L= Rolo oy = 1f = R o S ML I Z]5

Proof. (i) This result (cited in [1]) comes from the work of Werner
[107. It can be proved using the standard existence proof for a bounded
interval.

(11) The third sentence of (ii) follows from the second; the second is
proved by small modifications of the arguments in [4]. Lemma 2 of [4] is
replaced by the following result, which follows from Lemma 2.1 of
this paper by a contradiction argument. Let ¢>0 be given and
A={x,, ... xy} <[0,b] be an alternant for f'— R, ; then there exist 6 >0
and a function n(g) with n(e) >0 as ¢ —> 0 such that if 4"= {x}|, ., xy} &
[0,56] is fixed with |x/—x;] <0 if x,<oc, and x/=oc If x;,=x for
i=1,..,N,and Re R"[ A’] satisfies o(x;)(R— R }x])= —¢cfori=1, .., N,
then for ¢>0 sufficiently small we have ReR™[0,b] and
IR— R, lom<n(s)

(iii) We first observe that if éQ, =n—1=m and f— R has no
alternant of length m+n+ 2 in [0, #] (note that m<n so {0, b]=[0, b]),
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then 0Q_,=n—1 for all Z with {|Z| sufficiently smalil. If this were not true,
then considering a sequence {Z,} with Z,<=[0, 5], |Z,] -0, R, best on
Z,, and 0Q,=n for all k, and (as in [2]) considering an accumulation
point of alternants for f— R, on [0,b], one can show that this
accumulation point forms an alternant of length m+n+2 for f— R, In
[0, b], contrary to our assumption. Now it follows from Lemma 2.2 that
there is a constant © such that for | Z| sufficiently small, R, e R”[0, oo ]
and R, — R ljo-1<2 IR, — R, |04, so the uniform convergence on
[0, o] follows from (ii).

(iv) Using Lemma 2.2 and Theorem 2.5, there are constants £ and
7> 0 such that for ||Z|| sufficiently small we have

I/ =RAllro 1= =R Mo 1 S IR, = Rl ) SR, =R, o

Q i ‘ .
g’: LI/ =R ro.p] W/ =R, | [(),h]]w
7
so it suffices to show that
|f—R,| [0.p] /=R, ro.n < ol 1ZI+ M || Z]

for some constant M, independent of Z. For ||Z] small, suppose xe [0, ]
satisfies | f(x) — R, (x)| =1/ —R,ll;0s;, and then choose yeZ such that
[x—y| < ||Z|. Since Q. =2¢ on [0,b] for some ¢£>0, we must have
Q,=2¢2 on [0,b] for all |Z]| sufficiently small. Using this and the fact
that the coefficients of P, and O, are bounded, we have

If—R,I [0.61~ [f(x)— R,(x)]
S =D+ ()= R )]

[P(y) Qx)—Pox) QA y)
() Q.(x)
<ow(lZlY+ Hf_ R,

+

4
F31PA) Qx) = PoA3) QL)

+P AV QA y)— P (x) 0Ly
<ollZIN+1/=R. |

Z g AX — ¥)

|

4
+;[|Pz(y)| +1Q-()

> piAy—x')

i=1
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<o(lZIh+ 1/ —R..| [0.67

4lx—y[ ! , s :
+—'.T;lL|PzU’)| Z lgAx’ "X e )
-1

+10,(»)] Z Py Ty T X l)]:)

<ollZNV+ 1 =R, Lroa

aHz\r/ "
+ ]jz “ [( Z izl h’)(/Z‘ lg,.| jb' l)

i—0

+(Z lg.| h’)(Z | polib' ‘>]

<oUZD+ IS =R Mjom+ M 1 Z]

for some constant M, independent of Z, and the resut follows.

(v) Arguing as in (iv), it suffices to show that

Lf =R rowy =1/ =R, ljom S M (27

for some constant M, independent of Z, with [|Z]| sufficiently small. But
this was shown in [6] using the results of Ellacott and Williams [7]. ||

A natural question to ask at this point is: If o was chosen sufficiently
large, does | Z|| sufficiently small guarantee that R, is best on Zu [b, ¢ ]?
Under the assumptions of Theorem 3.1, part (iii), the answer is yes if
x ¢ M(R, ), since then we can choose h so large that for all x =5,
[fxy=R, () <If—R., \ro..q—¢ for some ¢, >0, and use the fact that
R, converges uniformly to R, on [0, x ]. The following example shows,
however, that if oo € M(R ) it is possible that for any real » > 0 there exists
Z,< [0, h] with || Z,| arbitrarily small and R, is not best on Z, U [h, = ].

ExamMpLE 1. Let feC,l0, ] have values —1/2, 5/3, —1/6, 21/11,
—1/18, 53/27 and 0 at 0, 1,2,3,4,5 and 6, respectively. Define f to be
linear between these points and define f(x)=0 for x=6. Then
R, € R3[0, v ] defined by R, (x)=(1+4x?)/(2+x") is a best rational
approximation to f on [0, o¢] from R3[0, =], with error norm 1 and
alternant {0, 1,2, 3,4,5}. Choose any o with »>5; then R, is best on
[0, b]. For any positive integer k, define R, € R2[0, ¢ ] by

1+ (1/k)x + (1 — Lk)x?

Rifx) = 2+ x3
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Using elementary calculus, R, has a unique maximum on [0, oc] at
a,=k—2+/(k—2)"+2, with 8, =R, (a,)=1—1/k +O(1/k?). Let k be
so large that a, > b, and [(f — R;)(6)] < f3, — 1/k. Now using the facts that,
for large k& |(f— R >p,—1/k for i=0,..5 and |[f'(x)>
IR(x)| +19/12 for xe (i, i+ 1), i=0, ..., 5, we can construct

Zo=[0ps 1 =0, JUll+6,.,2-010 - U5+ 04.h]

with 3y, = 0%, ., 05, =0, 5, >0",.,05 —0" (so |Z,] -0), R, is best
on Z, with error norm f, — |/k and alternant {J.,. 1+ ..., 5+ 3d5. ], but
R, is not best on Z, U [, oc ] since || f = Ryl 7 o (s = P

For numerical computation we use a combined First Remes-differential
correction program [97], which computes approximations of the form

P(-\—) — p()¢()(-\—) + ot [)mqu(x)
Q(Y) ‘/()1/’()(-\"+ +(/nwn(x)

on a finite set, with |g,| < for j=0,..,n and Q>0 on the set. Minor
changes were made in two subroutines to force 0<gqg, <1 instead of
~1<q,<1. I m<n, we take ¢,(x)=x"for i=0, .., m and ¥ (x)=x' for
j=0,.,n If m=n we wish no compute an approximation on Zu | x|,

where Z is a finite subset of [0, o¢ ). In this case, we define

X', xe”s X/, e’z
ddx)= (0, X=20,i<m; WiAx)= (0, X=%, [<n
1, X=x.i=m 1, X=%,/=n

and thus (P/Q)(x)=p,/q, If d(R)>0, so ¢,=0, the program can still
find an approximation of the form «(x) P(x)/(x(x) Q(x)), where x € I, 18
positive on Zu { o |, so the coefficient of " in the denominator will be
positive.

ExampLe 2. Let Z={0,0.1,02,..,20}. We approximated / on
Zu{o}from R{[Z vy {x}], where f takes the values — 1, —5/2 and 0 at
0,2 and 35, respectively, f is linear between these points, and f(x)=0 for
x25. To allow use of the program described above without further
modification, we let 20.1 play the role of 2. The computed approximation
on Zu {wxc} was

—2+4+0.1x

Rix)=
() 1 +0.1x

with error norm 1, achieved at 0*,2 ,5% and o (where the sign
indicates the sign of f— R). This approximation is best on [0, oc].
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For comparison, we also computed the best approximation
on {0,0.1,02,..,100} (¢ not included); the result was
(—1.99385 4+ 0.11494x)/(1 + 0.08559x) with error norm 0.99385, achieved
at 0%, 27,5 and 100 . This approximation (unlike the previous one) is
not best on {0,0.1,0.2,.., 100} U {oc} as the error at = is —1.34293.
Further details of proofs in this paper can be obtained from the authors.
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