Uniform Rational Approximation on Subsets of $[0, \infty]^*$

E. H. KAUFMAN, JR.

Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan 48859, U.S.A.

DAVID J. LEEMING

Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada

AND

GERALD D. TAYLOR

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523, U.S.A.

Communicated by G. Meinardus

Received June 3, 1985

1. Introduction

Let m and n be integers with $0 \le m \le n$, and let X be a closed subset of $[0, \infty)$ containing at least m+n+2 points. \overline{X} will denote X if m < n and X is bounded, and \overline{X} will denote $X \cup \{\infty\}$ otherwise. Let $C_0(\overline{X}) = \{f \in C(\overline{X}): f(\infty) = 0 \text{ if } \infty \in \overline{X}\}$ (thus if X is unbounded, then $\lim_{X \to -C,X \in X} f(x) = 0$. Also, for the case that m = n, the theory given here holds provided only that $\lim_{X \to -C,X \in X} f(x)$ exists). For any $Y \subseteq [0, \infty]$ with $Y \cap [0, \infty)$ closed, define $R_n^m[Y] = \{R = P/Q: P(x) = p_0 + p_1 x + \cdots + p_m x^m \in \Pi_m, Q(x) = q_0 + q_1 x + \cdots + q_n x^n \in \Pi_n, Q > 0$ on Y, $\max_{0 \le j \le n} |q_j| = 1$, P/Q is in lowest terms, and $\partial P \le \partial Q$ if Y is unbounded. Here $\partial P =$ degree of P, Π_m is the set of all polynomials of degree $\le m$ with real coefficients, and Y unbounded means either $\infty \in Y$ or Y is an unbounded subset of $[0, \infty)$. If $\infty \in Y$, we define $Q(\infty) = \lim_{X \to \infty} Q(X)$ and $R(\infty) = \lim_{X \to \infty} Q(X)/Q(X)$, and we observe that $R \in R_n^m[Y]$ implies that this last limit exists and is finite. Furthermore, the requirement that Q > 0

^{*}Supported in part by the National Science and Engineering Research Council of Canada under Grant A-8061 and the Naval Air System Command under ONR Contract N00014-84-0591.

on Y will be taken to be satisfied by $Q(\infty) = \infty$ when Q is not a constant. We also define $\overline{R}_n^m[Y] = \{R \in R_n^m[Y]: q_n \ge 0\}$. Letting $\|h\|_Y = \sup_{y \in Y} |h(y)|$, we say $R^* \in R_n^m[Y]$ is a best approximation to $f \in C_0(Y)$ on Y from $R_n^m[Y]$ if $\|f - R^*\|_Y \le \|f - R\|_Y$ for all $R \in R_n^m[Y]$ (and similarly for $\overline{R}_n^m[Y]$).

We observe that $\bar{R}_n^m[Y] = R_n^m[Y]$ if Y is unbounded. The reason for introducing $\bar{R}_n^m[Y]$ is that in the m < n case, if a best approximation from $\bar{R}_n^m[\bar{X}]$ exists, then this approximation is also best on $X \cap [0, b]$ from $\bar{R}_n^m[X \cap [0, b]]$ for some real number b, so this approximation can be computed by working on a bounded set. This follows from the fact that the alternation characterization for a best approximation from $\bar{R}_n^m[Y]$ is the same for Y bounded as it is for Y unbounded. Neither of these facts is true if \bar{R}_n^m is replaced by R_n^m (see [8] for a discussion in the special case of reciprocal polynomial approximation).

In the case m = n, if a best approximation on $\bar{X} = X \cup \{\infty\}$ from $\bar{R}_n^m[X \cup \{\infty\}]$ exists, then this approximation is also best on $(X \cap [0, b]) \cup \{\infty\}$ from $\overline{R}_n^m[(X \cap [0, b]) \cup \{\infty\}]$ for some real number b. This follows from the fact that the alternation characterization for a best approximation on $Y \cup \{\infty\}$ from $\bar{R}_n^m[Y \cup \{\infty\}]$ is the same for Y bounded as it is for Y unbounded. Neither of these facts is true if the point at ∞ is removed, since in the m = n case (unlike the m < n case), ∞ can be an essential extreme point; that is, an extreme point whose removal would change the approximation. In this case, we will show how a differential directly correction based algorithm can be used to approximations on $Z \cup \{\infty\}$ where Z is finite.

In Section 2 we give an (alternation) characterization theorem, a "zero in the convex hull" characterization, and a strong uniqueness theorem. In Section 3 we give a discretization theorem and examples.

We require some additional notation. Given $R^* = P^*/Q^* \in \overline{R}_n^m[\overline{X}]$, we define $d(R^*) = \min(m - \partial P^*, n - \partial Q^*)$ (we say R^* is nondegenerate if $d(R^*) = 0$), $M(R^*) = \{x \in \overline{X}: |f(x) - R^*(x)| = \|f - R^*\|_X\}$, and $\sigma(x) = \operatorname{sgn}(f(x) - R^*(x))$. We say $\{x_1, ..., x_N\} \subseteq M(R^*)$ with $x_1 < x_2 < \cdots < x_N$ is an alternating set of length N for $f - R^*$ if $f(x_{i+1}) - R^*(x_{i+1}) = -(f(x_i) - R^*(x_i))$ for i = 1, ..., N - 1. If N is minimal but sufficiently large to guarantee that R^* is a best approximation to f on \overline{X} from $\overline{R}_n^m[\overline{X}]$ according to Theorem 2.2 then we call $\{x_1, ..., x_N\}$ an alternant for $f - R^*$. If $P \in \Pi_m$ and $\{P_k\} \subseteq \Pi_m, P_k \Rightarrow P$ will mean that the coefficients of P_k converge to those of P (and similarly for $Q \in \Pi_n$ and $\{Q_k\} \subseteq \Pi_n$). Finally,

$$D(x) \equiv \begin{cases} (x+1)^n, & m=n\\ 1, & m < n. \end{cases}$$
 (1.1)

Some of the results in this paper for the case where X is unbounded have been proved, in a somewhat different situation, in [1, 2].

2. CHARACTERIZATION AND UNIQUENESS RESULTS

We have, for approximating from $\bar{R}_n^m[\bar{X}]$,

Theorem 2.1 (Kolmogoroff). $R^* \in \overline{R}_n^m[\overline{X}]$ is a best approximation to $f \in C_0(\overline{X})$ iff

$$\min_{x \in M(R^*)} (f(x) - R^*(x))(R(x) - R^*(x)) \le 0, \qquad \forall R \in \overline{R}_n^m[\overline{X}].$$

THEOREM 2.2 (alternation and uniqueness). Suppose $f \in C_0(\overline{X})$ and $R^* = P^*/Q^* \in \overline{R}_n^m[\overline{X}].$

- (1) If m = n, then R^* is a best approximation to f on \overline{X} iff there exists an alternating set for $f R^*$ in \overline{X} of length $m + n + 2 d(R^*)$;
- (2a) if m < n and $n \partial Q^* \le m \partial P^*$, then R^* is a best approximation to f on \overline{X} iff there exists an alternating set for $f R^*$ in X of length $m + n + 2 d(R^*)$;
- (2b) if m < n and $n \partial Q^* > m \partial P^*$, then R^* is a best approximation to f on \overline{X} iff there exists an alternating set for $f R^*$ in X of length $m + n + 1 d(R^*)$, and the sign of $f R^*$ at the largest point in this set equals the sign of the leading coefficient of P^* .

Furthermore, in all cases best approximations are unique.

Remark. If in case (2b) the maximum length of any alternating set for $f - R^*$ is $m + n + 1 - d(R^*)$, then one can think of the restriction $q_n^* \ge 0$ as playing the role of another point in the alternant (as in [8]). If this restriction were removed, and X is bounded, then the approximation could be improved (X unbounded requires $q_n^* \ge 0$ since $Q^* > 0$ on X).

The proofs of Theorems 2.1 and 2.2 are omitted, since they involve only small modifications in the proofs of Theorems 1, 2 and 4 in $\lceil 1 \rceil$.

We note that sometimes when no best approximation from $\bar{R}_n^m[\bar{X}]$ exists, a best approximation from $\bar{R}_n^m[\bar{X}]$ will exist, where $\bar{R}_n^m[\bar{X}]$ is $\bar{R}_n^m[\bar{X}]$ with the restriction removed that P/Q be in lowest terms. Specifically, the common factor in P and Q cannot be cancelled, otherwise the new denominator would be negative somewhre on \bar{X} . Algorithms such as those in [9] will occasionally produce such an approximation. A modified alternation theorem for approximation from $\bar{R}_n^m[\bar{X}]$ could be proved as in [5], but we do not pursue it in this paper. Note that if $X = [0, \infty)$ then a best approximation from $\bar{R}_n^m[\bar{X}]$ will always exist (see Theorem 3.1).

We observe that Theorem 2.2 holds regardless of whether X is bounded or unbounded. This is not true in the case m < n if $\overline{R}_n^m[\overline{X}]$ is replaced by $R_n^m[\overline{X}]$, since if X is bounded, any best approximation from $R_n^m[\overline{X}]$ must

possess an alternant of length $m+n+2-d(R^*)$ by the standard theory. This unification of the theory for X bounded and unbounded allows us to prove the following theorem.

THEOREM 2.3. Let $f \in C_0(\bar{X})$ and

- (1) Suppose m = n and a best approximation R^* on \overline{X} to f exists from $\overline{R}_n^m[\overline{X}]$. Then there is a real number b such that R^* is the best approximation on $(X \cap [0, b]) \cup \{\infty\}$ to f from $\overline{R}_n^m[(X \cap [0, b]) \cup \{\infty\}]$.
- (2) Suppose m < n and a best approximation R^* on \overline{X} to f exists from $\overline{R}_n^m[\overline{X}]$. Then there is a real number b such that R^* is the best approximation on $X \cap [0, b]$ to f from $\overline{R}_n^m[X \cap [0, b]]$.

Proof. We prove (2) for the case that R^* satisfies (2b) of Theorem 2.2. The other cases follow in a similar manner applying the alternation theory for best uniform nonconstrained rational approximations. Let $\{x_1, ..., x_{m+n+1-d(R^*)}\}$ be an alternant for $f - R^*$ in X, and let $b = x_{m+n+1-d(R^*)}$. Then $\{x_1, ..., x_{m+n+1-d(R^*)}\}$ is an alternant for $f - R^*$ in $X \cap [0, b] = (\overline{X \cap [0, b]})$ and $R^* \in \overline{R}_n^m[X \cap [0, b]]$, so R^* is best to f on $X \cap [0, b]$ by Theorem 2.2(2b).

Although it is desirable to find a constructive way of choosing b (as in [8]), and such a method exists if m = n and $X = [0, \infty)$, it could require the computation of as many as 4m + 8 rational approximations. Therefore, in most situations, one is better off just trying larger values for b until one is found which works. The fact that such a number b does exist shows that approximation on unbounded X can be done by approximating on a bounded subset (with the point at ∞ appended if m = n).

The reason for appending ∞ in the case m=n is that Theorem 2.3 is false otherwise. To see this, construct an example (e.g., Example 2 in Section 3) where every alternating set of length $m+n+2-d(R^*)$ contains the point at ∞ . Then R^* is not best on $X \cap [0, h]$ for any real h. For the m < n case, ∞ cannot be an "essential" extreme point, since best approximations are characterized by a bounded alternant (e.g., Theorem 2.2).

The following two lemmas will be useful. We only sketch the proofs, since the arguments are similar to those in [2].

Lemma 2.1. Suppose X is a closed subset of $[0, \infty)$ containing at least m+n+2 points, and R^* is a best approximation to $f \in C_0(\overline{X}) \backslash \overline{R}_n^m[\overline{X}]$ from $\overline{R}_n^m[\overline{X}]$. Let $A = \{x_1, ..., x_N\} \subseteq \overline{X}$ be an alternant for $f - R^*$, and let $A_k = \{x_{1k}, ..., x_{Nk}\} \subseteq \overline{X}$ satisfy $x_{ik} \to x_i'$ for i = 1, ..., N, where $x_1' < x_2' < \cdots < x_N'$ and $x_N' < \infty$ if m < n. Let $\{P_k\} \subseteq \Pi_m$, $\{Q_k\} \subseteq \Pi_n$, $\{\varepsilon_k\}$ satisfy

$$P_k \rightrightarrows P \in \Pi_m, \qquad Q_k \rightrightarrows Q \in \Pi_n, \qquad \varepsilon_k \geqslant 0, \qquad \varepsilon_k \to 0,$$

where

$$P_{k}(x) = \sum_{j=0}^{m} p_{jk} x^{j}, \qquad P(x) = \sum_{j=0}^{m} p_{j} x^{j},$$

$$Q_{k}(x) = \sum_{j=0}^{n} q_{jk} x^{j}, \qquad Q(x) = \sum_{j=0}^{n} q_{j} x^{j}.$$

Suppose that for all k, either

(i) $R_k = P_k/Q_k \in \overline{R}_n^m[A_k]$ and $\sigma(x_i)(R_k - R^*)(x_{ik}) \ge -\varepsilon_k$ for i = 1, ..., N, or

(ii) $q_{nk} \ge 0$ if $N = m + m + 1 - d(R^*)$, and $\sigma(x_i)(P_k/D - R^*(Q_k/D))$ $(x_{ik}) \ge -\varepsilon_k$ for i = 1, ..., N.

Then $PQ^* - P^*Q \equiv 0$. Furthermore, if R^* is nondegenerate, $\max_{0 \le j \le n} |q_{jk}| = 1$, $\forall k$, and $\max_{0 \le i \le N} Q_k(x_{ik}) \ge 0$, $\forall k$, then $P = P^*$ and $Q = Q^*$, so $P_k \rightrightarrows P^*$ and $Q_k \rightrightarrows Q^*$.

Proof. We first observe that (i) implies (ii) (with a different $\{\varepsilon_k\}$) since if (i) holds, then for all sufficiently large k and for i = 1, ..., N, we have

$$\sigma(x_i) \left(\frac{P_k}{D} - R^* \frac{Q_k}{D} \right) (x_{ik})$$

$$= \sigma(x_i) \frac{Q_k}{D} (x_{ik}) (R_k - R^*) (x_{ik})$$

$$\geq -\frac{Q_k}{D} (x_{ik}) \varepsilon_k$$

$$\geq \begin{cases} -\frac{1}{D(x_i') - \frac{1}{2}} \left(\sum_{j=0}^n (x_i' + 1)^j \right) \varepsilon_k \to 0 & \text{if } x_i' < \infty \\ -(q_n + 1) \varepsilon_k \to 0 & \text{if } x_i' = \infty. \end{cases}$$

Thus we assume (ii) holds, and divide the proof into two parts.

Case 1.
$$(N = m + n + 2 - d(R^*))$$
. For $i = 1, ..., N - 1$ we have

$$\sigma(x_i)\left(\frac{P_kQ^*-P^*Q_k}{Q^*D}\right)(x_{ik}) \geqslant -\varepsilon_k,$$

so $\sigma(x_i)(PQ^* - P^*Q)(x_i') \ge 0$.

If $x'_N < \infty$, then the last inequality holds for i = N also. Thus, counting zeros implies that $PQ^* - P^*Q \equiv 0$. Suppose $x'_N = \infty$ (so m = n by

assumption) and $PQ^* - P^*Q \neq 0$, then $\partial(PQ^* - P^*Q) = m + n - d(R^*)$ and this implies that

$$\left(\frac{P}{D} - R^* \frac{Q}{D}\right)(\infty) = \frac{PQ^* - P^*Q}{Q^*D}(\infty) \neq 0.$$

Thus, for some real $\tilde{x} > x'_{N-1}$, sufficiently large, we have

$$\sigma(x_N) \operatorname{sgn}(PQ^* - P^*Q)(\tilde{x})$$

$$= \sigma(x_N) \operatorname{sgn}\left(\frac{P}{D} - R^* \frac{Q}{D}\right) (\tilde{x}) = \sigma(x_N) \operatorname{sgn}\left(\frac{P}{D} - R^* \frac{Q}{D}\right) (\infty) > 0,$$

so again $PQ^* - P^*Q \equiv 0$, as desired.

The last sentence of the lemma now follows by standard arguments.

Case 2 $(N = m + n + 1 - d(R^*))$. As in Case 1, if $PQ^* - P^*Q \not\equiv 0$ then we must have $\partial(PQ^* - P^*Q) = m + n - d(R^*)$. Using Theorem 2.2, we have

$$\partial (PQ^*) \leq m + \partial Q^* < n + \partial P^* \leq m + n - d(R^*).$$

So again $\partial Q = n$, $\partial P^* = m - d(R^*)$ and hence $q_n > 0$. Thus for real $\tilde{x} > x_N'$ (sufficiently large) we have

$$sgn(PQ^* - P^*Q)(\tilde{x}) = -sgn(P^*Q)(\tilde{x})$$

$$= -sgn(leading coefficient of P^*) = -\sigma(x_N),$$

so
$$-\sigma(x_N) \cdot (PQ^* - P^*Q)(\tilde{x}) > 0$$
, and the rest follows as in Case 1.

LEMMA 2.2. Suppose X is a closed subset of $[0, \infty)$, Y is a compact subset of X containing at least m+n+2 points, $R^* \in \overline{R}_n^m[\overline{X}]$ is nondegenerate, and $\{P_k\} \subseteq \Pi_m$, $\{Q_k\} \subseteq \Pi_n$ satisfy $P_k \rightrightarrows P^*$ and $Q_k \rightrightarrows Q^*$. If m < n, suppose further that $\partial Q^* \geqslant n-1$, $q_{nk} \geqslant 0$ for all k if $\partial Q^* = n-1$, and either $\partial Q^* \geqslant m+1$ or $q_{nk} = 0$ for all $k \geqslant$ some constant k_0 . Then there exist constants Ω and $0 \leqslant 0$ such that for all $0 \leqslant 0$ sufficiently large, $0 \leqslant 0 \leqslant 0$ and $0 \leqslant 0 \leqslant 0$ is and $0 \leqslant 0 \leqslant 0$.

Proof. If m=n, nondegeneracy implies $q_n^*>0$. Assume X is unbounded; similar arguments work if X is bounded. Thus, regardless of whether m=n or m < n, for all $k \ge$ some constant k_1 we will have either $q_{nk} \ge \frac{1}{2}q_n^*>0$ (if $\partial Q^*=n$) or $q_{nk} \ge 0$, $q_n^*=0$, $q_{n-1,k} \ge \frac{1}{2}q_{n-1}^*>0$ (if $\partial Q^*=n-1$). The lower bounds on Q^* and Q_k follow from this. If we let $(P_kQ^*-P^*Q_k)(x)=\sum_{l=0}^{m+n}a_{lk}x^l$ and consider the degrees of the numerator and denominator of $R_k-R^*=(P_kQ^*-P^*Q_k)/Q^*Q_k$, we also get $\|R_k-R^*\|_X \le$

 $r_1 \max_{0 \le l \le m+n} |a_{lk}|$ for some constant r_1 . Thus, if $Y \subseteq [0, L]$ for some L > 0, then for k sufficiently large we get (for some constant r_2), that

$$||R_{k} - R^{*}||_{\bar{X}} \leq r_{1}r_{2} ||P_{k}Q^{*} - P^{*}Q_{k}||_{Y} = r_{1}r_{2} ||Q^{*}Q_{k}(R_{k} - R^{*})||_{Y}$$

$$\leq r_{1}r_{2} \cdot 2\left(\sum_{j=0}^{n} L^{j}\right)^{2} ||R_{k} - R^{*}||_{Y} \equiv \Omega ||R_{k} - R^{*}||_{Y}. \quad \blacksquare$$

One can prove the following "zero in the convex hull" characterization of best approximations in our setting. The proof, which uses Lemma 2.1 and arguments similar to those in [3], will be omitted.

THEOREM 2.4. Given X a closed subset of $[0, \infty)$ with at least m+n+2 points, $f \in C_0[\bar{X}] \backslash \bar{R}_n^m[\bar{X}]$, and $R^* \in \bar{R}_n^m[\bar{X}]$, let $S_1 = \{[0, ..., 0, -1]\} \subseteq R^{m+n+2}$ if m < n and $q_n^* = 0$, and $S_1 = \emptyset$ otherwise. Further let $M'(R^*) = M(R^*) \backslash [\bar{c}, \infty]$ (with $\bar{c} = \inf\{c \colon [c, \infty] \subseteq M(R^*)\}$) if m < n and $\infty \in M(R^*)$, and $M'(R^*) = M(R^*)$ otherwise. Let D(x) be defined by (1.1) and let

$$S = \left\{ \sigma(x) \left[\frac{1}{D(x)}, \frac{x}{D(x)}, \dots, \frac{x^m}{D(x)}, \frac{R^*(x)}{D(x)}, \frac{xR^*(x)}{D(x)}, \dots, \frac{x^nR^*(x)}{D(x)} \right] : x \in M'(R^*) \right\} \cup S_1.$$

Then R^* is a best approximation to f from $\overline{R}_n^m[\overline{X}]$ on \overline{X} iff $0 \in \mathcal{H}(S) \equiv$ the convex hull of S.

Next we prove a strong uniqueness theorem which we require later. The proof follows the line of argument used to obtain strong uniqueness results in [2, 3].

Theorem 2.5. Suppose X is a closed subset of $[0, \infty)$ containing at least m+n+2 points and $R^* \in \overline{R}_n^m[\overline{X}]$ is a best approximation to $f \in C_0(\overline{X})$. Suppose R^* is nondegenerate, and if m < n also assume either X is bounded or $\partial Q^* \geqslant \max(n-1,m+1)$. Then there is a constant $\gamma > 0$ such that for all $R \in \overline{R}_n^m[\overline{X}]$,

$$\|f-R\|_{\bar{X}} \ge \|f-R^*\|_{\bar{X}} + \gamma \|R-R^*\|_{X}.$$

Proof. If $f \in \overline{R}_n^m[\overline{X}]$ the result follows immediately, so assume $f \notin \overline{R}_n^m[\overline{X}]$. Suppose (by way of contradiction) there exists $\{R_k\} \subseteq \overline{R}_n^m[\overline{X}]$ with $R_k \neq R^*$ for all k and

$$\gamma(R_k) \equiv \frac{\|f - R_k\|_X - \|f - R^*\|_X}{\|R_k - R^*\|_X} \to 0.$$

Then $||R_k||_{\bar{X}}$ is bounded (otherwise $\gamma(R_k) \not\to 0$), so using subsequences, if necessary, we can assume $P_k \rightrightarrows P \in \Pi_m$, $Q_k \rightrightarrows Q \in \Pi_n$. Let A be an alternant for $f - R^*$. For any $y \in A$, we have

$$\gamma(R_k) \|R_k - R^*\|_{\bar{X}} = \|f - R_k\|_{\bar{X}} - \|f - R^*\|_{\bar{X}}
\geqslant \sigma(y)(f - R_k)(y) - \sigma(y)(f - R^*)(y)
= \sigma(y)(R^* - R_k)(y).$$

By Lemma 2.1, $P \equiv P^*$ and $Q \equiv Q^*$, so $P_k \rightrightarrows P^*$ and $Q_k \rightrightarrows Q^*$. Now let L > 0 be such that $X \subseteq [0, L]$ if X is bounded, otherwise $X \cap [0, L]$ has at least m+n+2 points. In either case, define $Y = X \cap [0, L]$. Then by Lemma 2.2 there are constants $\varepsilon > 0$, k_0 , and Ω such that for $k \geqslant k_0$ we have $Q^* \geqslant \varepsilon$ on \overline{X} , $Q_k \geqslant \varepsilon/2$ on \overline{X} , and $\|R_k - R^*\|_{\overline{X}} \leqslant \Omega \|R_k - R^*\|_{\overline{Y}}$. Now let $(P_k Q^* - P^* Q_k)(x) = \sum_{l=0}^{m+n} a_{lk} x^l$, $\beta_k = \max_{0 \le l \le m+n} |a_{lk}|$, and $c = \inf_{k \geqslant k_0} \max_{y \in A} \sigma(y)((R^* - R_k)(y)/\beta_k)$. Then arguments similar to those in Lemma 2.1 can be used to show c > 0, by showing that assuming the contrary implies $\sum_{l=0}^{m+n} (a_{lk}/\beta_k) x^l$ converges to the zero polynomial. Now drawing subsequences if necessary, let y_0 be such that $\sigma(y_0)((R^* - R_k)(y_0)/\beta_k) \geqslant c$, for all $k \geqslant k_0$. For $k \geqslant k_0$ we have

$$\gamma(R_{k}) \|R_{k} - R^{*}\|_{X} \ge \sigma(y_{0})(R^{*} - R_{k})(y_{0}) = \beta_{k}\sigma(y_{0}) \frac{(R^{*} - R_{k})(y_{0})}{\beta_{k}}$$

$$\geqslant \beta_{k}c \geqslant \frac{\|P_{k}Q^{*} - P^{*}Q_{k}\|_{Y}}{\sum_{l=0}^{m+n}L^{l}} \cdot c$$

$$= \frac{c}{\sum_{l=0}^{m+n}L^{l}} \|Q^{*}Q_{k}(R_{k} - R^{*})\|_{Y}$$

$$\geqslant \frac{c}{\sum_{l=0}^{m+n}L^{l}} \cdot \varepsilon \cdot \frac{\varepsilon}{2} \|R_{k} - R^{*}\|_{Y}$$

$$\geqslant \frac{\varepsilon^{2}c}{2\sum_{l=0}^{m+n}L^{l}} \cdot \frac{1}{\Omega} \|R_{k} - R^{*}\|_{X},$$

so $\gamma(R_k) \ge \varepsilon^2 c/(2\Omega \sum_{l=0}^{m+n} L^l)$, which violates $\gamma(R_k) \to 0$.

3. DISCRETIZATION RESULTS, COMPUTATION AND EXAMPLES

In actually computing approximations one normally works on a finite point set, so it is of some interest to know how such a computed approximation compares to the best approximation on $[0, \infty]$. The following discretization theorem sheds some light on this question.

THEOREM 3.1. Suppose $f \in C_0[0, \infty] \setminus \overline{R}_n^m[0, \infty]$.

- (i) A best approximation, R_{∞} , from $\bar{R}_{n}^{m}[0, \infty]$ on $[0, \infty]$ exists.
- (ii) Suppose R_{∞} is nondegenerate, and b is so large that R_{∞} is also best on [0,b]. Then a best approximation R_Z exists on \overline{Z} from $\overline{R}_n^m[\overline{Z}]$ for all $Z \subseteq [0,b]$ with $\|Z\| \equiv \sup_{x \in [0,b]} \inf_{y \in Z} |x-y|$ sufficiently small, and R_Z converges uniformly to R_{∞} on [0,b] as $\|Z\| \to 0$. Furthermore, $\lim_{\|Z\| \to 0} \|f R_Z\|_{\overline{Z}} = \|f R_{\infty}\|_{\overline{[0,b]}}$.
- (iii) Under the hypothesis of (ii), suppose further that if m < n, then $\partial Q_{\infty} \ge n-1$ and either $\partial Q_{\infty} \ge m+1$ or $f-R_{\infty}$ has no alternant of length m+n+2 in [0,b]. Then $R_Z \in \overline{R}_n^m[0,\infty]$ for all $\|Z\|$ sufficiently small, and R_Z converges uniformly to R_{∞} on $[0,\infty]$ as $\|Z\| \to 0$. Furthermore $\lim_{\|Z\| \to 0} \|f-R_Z\|_Z = \|f-R_{\infty}\|_{[0,\infty]}$.
- (iv) Under the hypothesis of (iii), for ||Z|| sufficiently small there is a constant M_1 (independent of Z), such that

$$||f - R_Z||_{[0,\infty,1]} - ||f - R_{\infty}||_{[0,\infty,1]} \le M_1(\omega(||Z||) + ||Z||),$$

where

$$\omega(\delta) \equiv \max\{|f(x) - f(y)| : x, y \in [0, \infty) \text{ and } |x - y| \le \delta\}.$$

(v) Under the hypothesis of (iii), assume also that $0 \in \mathbb{Z}$ and $b \in \mathbb{Z}$, and f'' is continuous on [0, b]. Then for $\|\mathbb{Z}\|$ sufficiently small there is a constant M_2 such that

$$||f - R_Z||_{[0,\infty]} - ||f - R_{\infty}||_{[0,\infty]} \le M_2 ||Z||^2.$$

- *Proof.* (i) This result (cited in [1]) comes from the work of Werner [10]. It can be proved using the standard existence proof for a bounded interval.
- (ii) The third sentence of (ii) follows from the second; the second is proved by small modifications of the arguments in [4]. Lemma 2 of [4] is replaced by the following result, which follows from Lemma 2.1 of this paper by a contradiction argument. Let $\varepsilon > 0$ be given and $A = \{x_1, ..., x_N\} \subseteq \overline{[0, b]}$ be an alternant for $f R_\infty$; then there exist $\delta > 0$ and a function $\eta(\varepsilon)$ with $\eta(\varepsilon) \to 0$ as $\varepsilon \to 0$ such that if $A' = \{x'_1, ..., x'_N\} \subseteq \overline{[0, b]}$ is fixed with $|x'_i x_i| < \delta$ if $x_i < \infty$, and $x'_i = \infty$ if $x_i = \infty$ for i = 1, ..., N, and $R \in \overline{R}_n^m[A']$ satisfies $\sigma(x_i)(R R_\infty)(x'_i) \ge -\varepsilon$ for i = 1, ..., N, then for $\varepsilon > 0$ sufficiently small we have $R \in \overline{R}_n^m[0, b]$ and $\|R R_\infty\|_{\overline{[0,b]}} \le \eta(\varepsilon)$.
- (iii) We first observe that if $\partial Q_{\infty} = n 1 = m$ and $f R_{\infty}$ has no alternant of length m + n + 2 in [0, b] (note that m < n so $\overline{[0, b]} = [0, b]$),

then $\partial Q_Z = n-1$ for all Z with $\|Z\|$ sufficiently small. If this were not true, then considering a sequence $\{Z_k\}$ with $Z_k \subseteq [0,b]$, $\|Z_k\| \to 0$, R_k best on Z_k , and $\partial Q_k = n$ for all k, and (as in [2]) considering an accumulation point of alternants for $f - R_k$ on [0,b], one can show that this accumulation point forms an alternant of length m+n+2 for $f - R_\infty$ in [0,b], contrary to our assumption. Now it follows from Lemma 2.2 that there is a constant Ω such that for $\|Z\|$ sufficiently small, $R_Z \in \overline{R}_n^m[0,\infty]$ and $\|R_Z - R_\infty\|_{[0,\infty]} \le \Omega \|R_Z - R_\infty\|_{[0,b]}$, so the uniform convergence on $[0,\infty]$ follows from (ii).

(iv) Using Lemma 2.2 and Theorem 2.5, there are constants Ω and $\gamma > 0$ such that for ||Z|| sufficiently small we have

$$\begin{split} \|f-R_Z\|_{\lceil 0,\infty\rceil} - \|f-R_\infty\|_{\lceil 0,\infty\rceil} &\leqslant \|R_Z-R_\infty\|_{\lceil 0,\infty\rceil} \leqslant \Omega \|R_Z-R_\infty\|_{\lceil 0,b\rceil} \\ &\leqslant \frac{\Omega}{\gamma} \left[\|f-R_Z\|_{\lceil 0,b\rceil} - \|f-R_\infty\|_{\lceil 0,b\rceil} \right], \end{split}$$

so it suffices to show that

$$||f - R_Z||_{[0,b]} - ||f - R_{\infty}||_{[0,b]} \le \omega(||Z||) + M_3 ||Z||$$

for some constant M_3 independent of Z. For $\|Z\|$ small, suppose $x \in [0, h]$ satisfies $|f(x) - R_Z(x)| = \|f - R_Z\|_{[0,h]}$, and then choose $y \in Z$ such that $|x - y| \le \|Z\|$. Since $Q_\infty \ge \varepsilon$ on [0, h] for some $\varepsilon > 0$, we must have $Q_Z \ge \varepsilon/2$ on [0, h] for all $\|Z\|$ sufficiently small. Using this and the fact that the coefficients of P_Z and Q_Z are bounded, we have

$$\begin{split} \|f - R_Z\|_{\{0,b\}} &= |f(x) - R_Z(x)| \\ &\leq |f(x) - f(y)| + |f(y) - R_Z(y)| \\ &+ \frac{|P_Z(y) Q_Z(x) - P_Z(x) Q_Z(y)|}{Q_Z(y) Q_Z(x)} \\ &\leq \omega(\|Z\|) + \|f - R_Z\|_Z \\ &+ \frac{4}{\varepsilon^2} |P_Z(y) Q_Z(x) - P_Z(y) Q_Z(y) \\ &+ P_Z(y) Q_Z(y) - P_Z(x) Q_Z(y)| \\ &\leq \omega(\|Z\|) + \|f - R_{\infty}\|_Z \\ &+ \frac{4}{\varepsilon^2} \bigg[|P_Z(y)| \left| \sum_{j=1}^n q_{jZ}(x^j - y^j) \right| + |Q_Z(y)| \\ &\cdot \left| \sum_{j=1}^m p_{jZ}(y^j - x^j) \right| \bigg] \end{split}$$

$$\leq \omega(\|Z\|) + \|f - R_{\infty}\|_{\lceil 0, b \rceil}
+ \frac{4 \|x - y\|}{\varepsilon^{2}} \left[\|P_{Z}(y)\|_{j=1}^{n} \|q_{jZ}(x^{j-1} + x^{j-2}y + \dots + y^{j-1}) \|
+ \|Q_{Z}(y)\|_{j=1}^{m} \|p_{jZ}(y^{j-1} + xy^{j-2} + \dots + x^{j-1}) \| \right]
\leq \omega(\|Z\|) + \|f - R_{\infty}\|_{\lceil 0, b \rceil}
+ \frac{4 \|Z\|}{\varepsilon^{2}} \left[\left(\sum_{i=0}^{m} \|p_{iZ}\|b^{i} \right) \left(\sum_{j=1}^{n} |q_{jZ}| |jb^{j-1} \right)
+ \left(\sum_{j=0}^{n} |q_{jZ}| |b^{j} \right) \left(\sum_{j=1}^{m} |p_{iZ}| |ib^{j-1} \right) \right]
\leq \omega(\|Z\|) + \|f - R_{\infty}\|_{\lceil 0, b \rceil} + M_{3} \|Z\|$$

for some constant M_3 independent of Z, and the resut follows.

(v) Arguing as in (iv), it suffices to show that

$$||f - R_Z||_{[0,b]} - ||f - R_Z||_{[0,b]} \le M_4 ||Z||^2$$

for some constant M_4 independent of Z, with ||Z|| sufficiently small. But this was shown in [6] using the results of Ellacott and Williams [7].

A natural question to ask at this point is: If b was chosen sufficiently large, does ||Z|| sufficiently small guarantee that R_Z is best on $Z \cup [b, \infty]$? Under the assumptions of Theorem 3.1, part (iii), the answer is yes if $\infty \notin M(R_\infty)$, since then we can choose b so large that for all $x \ge b$, $|f(x) - R_\infty(x)| \le ||f - R_\infty||_{[0,\infty]} - \varepsilon_1$ for some $\varepsilon_1 > 0$, and use the fact that R_Z converges uniformly to R_∞ on $[0,\infty]$. The following example shows, however, that if $\infty \in M(R_\infty)$ it is possible that for any real b > 0 there exists $Z_b \subseteq [0,b]$ with $||Z_b||$ arbitrarily small and R_{Z_b} is not best on $Z_b \cup [b,\infty]$.

EXAMPLE 1. Let $f \in C_0[0, \infty]$ have values -1/2, 5/3, -1/6, 21/11, -1/18, 53/27 and 0 at 0, 1, 2, 3, 4, 5 and 6, respectively. Define f to be linear between these points and define f(x) = 0 for $x \ge 6$. Then $R_{\infty} \in \overline{R}_3^2[0, \infty]$ defined by $R_{\infty}(x) = (1+x^2)/(2+x^2)$ is a best rational approximation to f on $[0, \infty]$ from $\overline{R}_3^2[0, \infty]$, with error norm 1 and alternant $\{0, 1, 2, 3, 4, 5\}$. Choose any b with b > 5; then R_{∞} is best on [0, b]. For any positive integer k, define $R_k \in \overline{R}_3^2[0, \infty]$ by

$$R_k(x) = \frac{1 + (1/k)x + (1 - 1/k)x^2}{2 + x^2}.$$

Using elementary calculus, R_k has a unique maximum on $[0, \infty]$ at $\alpha_k = k - 2 + \sqrt{(k-2)^2 + 2}$, with $\beta_k = R_k(\alpha_k) = 1 - 1/k + O(1/k^2)$. Let k be so large that $\alpha_k > b$, and $|(f - R_k)(6)| < \beta_k - 1/k$. Now using the facts that, for large k, $|(f - R_k)(i)| > \beta_k - 1/k$ for i = 0, ..., 5 and $|f'(x)| > |R'_k(x)| + 19/12$ for $x \in (i, i+1)$, i = 0, ..., 5, we can construct

$$Z_k = [\delta_{0k}, 1 - \bar{\delta}_{1k}] \cup [1 + \delta_{1k}, 2 - \bar{\delta}_{2k}] \cup \cdots \cup [5 + \delta_{5k}, h]$$

with $\delta_{0k} \to 0^+$, ..., $\delta_{5k} \to 0^+$, $\delta_{1k} \to 0^+$, ..., $\delta_{5k} \to 0^+$ (so $||Z_k|| \to 0$), R_k is best on Z_k with error norm $\beta_k - 1/k$ and alternant $\{\delta_{0k}, 1 + \delta_{1k}, ..., 5 + \delta_{5k}\}$, but R_k is not best on $Z_k \cup [b, \infty]$ since $||f - R_k||_{Z_k \cup [b, \infty]} = \beta_k$.

For numerical computation we use a combined First Remes-differential correction program [9], which computes approximations of the form

$$\frac{P(x)}{Q(x)} = \frac{p_0\phi_0(x) + \dots + p_m\phi_m(x)}{q_0\psi_0(x) + \dots + q_n\psi_n(x)}$$

on a finite set, with $|q_j| \le 1$ for j = 0, ..., n and Q > 0 on the set. Minor changes were made in two subroutines to force $0 \le q_n \le 1$ instead of $-1 \le q_n \le 1$. If m < n, we take $\phi_i(x) = x^i$ for i = 0, ..., m and $\psi_j(x) = x^j$ for j = 0, ..., n. If m = n we wish no compute an approximation on $Z \cup \{\infty\}$, where Z is a finite subset of $[0, \infty)$. In this case, we define

$$\phi_{i}(x) = \begin{cases} x^{i}, & x \in \mathbb{Z} \\ 0, & x = \infty, i < m; \\ 1, & x = \infty, i = m \end{cases} \qquad \psi_{j}(x) = \begin{cases} x^{j}, & x \in \mathbb{Z} \\ 0, & x = \infty, j < n \\ 1, & x = \infty, j = n \end{cases}$$

and thus $(P/Q)(\infty) = p_m/q_n$. If d(R) > 0, so $q_n = 0$, the program can still find an approximation of the form $\alpha(x) P(x)/(\alpha(x) Q(x))$, where $\alpha \in \Pi_{d(R)}$ is positive on $Z \cup \{\infty\}$, so the coefficient of x^n in the denominator will be positive.

EXAMPLE 2. Let $Z = \{0, 0.1, 0.2, ..., 20\}$. We approximated f on $Z \cup \{\infty\}$ from $\overline{R}_1^1[Z \cup \{\infty\}]$, where f takes the values -1, -5/2 and 0 at 0, 2 and 5, respectively, f is linear between these points, and f(x) = 0 for $x \ge 5$. To allow use of the program described above without further modification, we let 20.1 play the role of ∞ . The computed approximation on $Z \cup \{\infty\}$ was

$$R(x) = \frac{-2 + 0.1x}{1 + 0.1x}$$

with error norm 1, achieved at $0^+, 2^-, 5^+$ and ∞^- (where the sign indicates the sign of f - R). This approximation is best on $[0, \infty]$.

For comparison, we also computed the best approximation {0, 0.1, 0.2, ..., 100} (∞) not included); the result on (-1.99385 + 0.11494x)/(1 + 0.08559x) with error norm 0.99385, achieved at 0^+ , 2^- , 5^+ and 100^- . This approximation (unlike the previous one) is not best on $\{0, 0.1, 0.2, ..., 100\} \cup \{\infty\}$ as the error at ∞ is -1.34293.

Further details of proofs in this paper can be obtained from the authors.

REFERENCES

- 1. H.-P. Blatt, Rationale Tschebysheff-Approximation über unbeschränkten Intervallen, Numer. Math. 27 (1977), 179–190.
- 2. H.-P. Blatt, Zur stetigkeit rationaler *T*-Approximationen über unbeschränkten Intervallen, *Numer. Math.* 27 (1977), 191–202.
- 3. E. W. CHENEY, "Introduction to Approximation Theory" (2nd ed.), Chelsea, New York, 1982.
- 4. C. B. DUNHAM, Varisolvent Chebyshev approximation on subsets, in "Approximation Theory" (G. G. Lorentz, Ed.), pp. 337-340, Academic Press, New York, 1973.
- 5. C. B. Dunham, Alternation in (weighted) ordinary rational approximation on a subset, J. Approx. Theory 27 (1979), 244-248.
- 6. C. B. DUNHAM AND J. WILLIAMS, Rate of convergence of discretization in Chebyshev approximation, *Math. Comp.* 37 (1981), 135-139.
- 7. S. ELLACOTT AND J. WILLIAMS, Linear Chebyshev approximation in the complex plane using Lawson's algorithm, *Math. Comp.* **30** (1976), 35-44.
- 8. E. H. KAUFMAN, JR., D. J. LEEMING, AND G. D. TAYLOR, Approximation on subsets of [0, ∞) by reciprocals of polynomials, in "Proceedings, Fourth Texas Conference on Approximation Theory" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), pp. 553–559, Academic Press, New York, 1983.
- E. H. KAUFMAN, JR., S. F. McCORMICK, AND G. D. TAYLOR, Uniform rational approximation on large data sets. *Internat. J. Numer. Methods Engrg.* 18 (1982), 1569-1575.
- H. Werner, "Vorlesung über Approximationstheorie," Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1966.